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Two-photon spectroscopy of transition metal ions in cubical symmetry 
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Abstract 

Symmetry adaptation techniques are applied to the determination of the intensity of intraconfigurational two-pho- 
ton transitions for transition metal ions in cubical symmetry. This leads to a simple model giving the polarization 
dependence of the intensity of two-photon (electric dipolar) transitions between Stark levels of the configuration 3d u 
(N even or odd). 

1. Introduction 2. Theory 

With the availability of tunable dye lasers, two-pho- 
ton spectroscopy of transition ions in molecular or solid 
state environments (generic symmetry G) has been the 
object of numerous developments from both an experi- 
mental and a theoretical viewpoint [1-23]. Indeed, 
two-photon spectroscopy turns out to be a useful com- 
plement to one-photon spectroscopy because it allows 
levels to be reached which cannot be seen in one-pho- 
ton spectroscopy [1-13]. There are now many two-pho- 
ton absorption spectra published for rare earth ions 
(generic configuration 4f x for lanthanides or 5ff v for 
actinides) in various surroundings. In this respect, to 
name but a few recently published studies, let us men- 
tion Gd 3+ (N = 7) in Gd(OH)3 (G =D3h) [14, 15], in 
GdC13 (G=C3h)  [14] and in the cubic elpasolite 
Cs2NaGdC16 (G = Oh) [16], Sm 2+ ( N = 6 )  in BaCIF 
(G = C4~) [17, 18] and in SrC1F (G = C4v) [19], and, 
finally, Eu 3+ (N = 6) in LuPO4 (G = Ozd ) [19]. Transi- 
tion metal ions of the iron series (generic configuration 
3d N) in crystals have also been the object of recent 
investigations. For example, the case of Ni 2+ (N = 8) in 
MgO (G = O) has received a great deal of attention in 
the last three years [20-22]. Furthermore, there are also 
some data about Co 2+ (N = 7) in KZnF3 (G = O) [23]. 

It is the aim of the present paper to report on a 
simple model for describing 3d N ,3d  u intraconfigu- 
rational two-photon transitions for a transition metal 
ion in an environment of cubical (octahedral) symmetry 
(G = O or Oh). The main ingredients of the model 
(symmetry-adapted wavefunctions and second- plus 
third-order mechanisms) are given in Section 2 and 
the necessary formulae for applications are listed in 
Section 3. 

Let us consider a (parity-allowed) two-photon transi- 
tion between an initial state i, of symmetry F, and a 
final state f ,  of  symmetry F', of the configuration 3dN; 
the labels F and F' stand for irreducible representations 
of the group O or its double group O* according to 
whether the number N of 3d electrons is even or odd. 
The corresponding state vectors are denoted [3dUiFT) 
and 13dUfF') ' ') where 7 and ~/' distinguish the various 
partners for F and F'  respectively. These vectors can be 
expressed either in a strong field basis of type 
It2 N- M ( S  1 F 1 )eM(S2F2)STFTflF7 ) or in a weak field ba- 
sis of type ]3dN~SLJaF7 ). We shall adopt here a weak 
field approach. (The weak and strong field approaches 
are equivalent in so far as we use in both approaches 
the same time-independent hamiltonian H~+¢ for the 
ion in its environment [24].) 

We have chosen to calculate the transition matrix 
element Mi~r..~ .l¢r'~.') within the following approxima- 
tions. 

(i) We use single-mode excitations (energy h¢o~., 
wavevector k:, polarization 8~,) of the radiation field 
and we suppose the two photons (2 = 1,2) to be identi- 
cal. (In fact, most of the experiments carried out until 
now use a single laser beam.) 

(ii) We use a time-dependent hamiltonian of the type 
H i + e +  Hrf+ Hin t for describing the system formed 
by the ion in its environment (Hi+e) and the radiation 
field (Hrr) which interact through Hi,~ and we treat 
Hint in the framework of the electric dipole approxima- 
tion. 

(iii) We use a quasi-closure approximation to deal 
with the G6pper t -Mayer  formula for two-photon pro- 
cesses. 
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As a result, the transition matrix element can be 
calculated to be [1, 5, 6] 

Mi(r,i) ~f(r'./) = (3dUfF'~'lH~fr[3dUiF~ } 

where the effective operator Heft is written [10] 

H~.,= Z Z C[(kskL)k]({dodo} (k)" i~k~k~)k) 
k = O, 2 k s k  L 

The term {dodo}(k) is the tensor product of rank k of the 
polarization unit vectors d ° for the two photons. The 
dependence on the ion appears in the electronic double 
tensor i ~  ks~L)k of spin rank ks, orbital rank kL and 
total rank k. Furthermore, the C[(kskL)k] parameters 
are expansion coefficients which may be calculated from 
first principles. The contributions (ks = 0, kL = 2, k = 2) 
and (ks ¢ O, kL, k) correspond to the standard second- 
order mechanisms [1-4] and to the so-called third-order 
mechanisms (which may take into account ligand, crys- 
tal field and spin-orbi t  effects) [5-9] respectively. 

The intensity of the i(F) , f ( F ' )  two-photon transi- 
tion, i.e. 

= E 2 
"/7' 

can be calculated by using the symmetry adaptation 
techniques developed in refs. 24 and 25. We thus obtain 

Sr ~ r, = Z E Z I[klF"; rr'] Z 
k=O, 2 ,=0,2 ~" ~" 

x ( {dodo} ~,,~,,"))* 

where the I parameters, which depend on the ion in its 
environment, have been derived in the weak field cou- 
pling scheme [11-13, 22]. These intensity parameters 
depend on the wavefunctions used for the initial and 
final states, on the atomic parameters C[(kskL)k], on 
atomic reduced matrix elements and on isoscalar factors 
for the chains of groups S O ( 3 ) ~  O (for N even) or 
SU(2) D O* (for N odd). The number of independent 
parameters I is controlled by a set of properties and rules 
[ 11 - 13]. For  the purpose of this paper, it is sufficient to 
note that the sum over F" is limited by the following 
selection rule: F" is of the type Al, E or 7"2 and must be 
contained in the representation F ' * ®  F of the octahe- 
dral group O. In addition, the polarization dependence 
is completely contained in the factors of  type {dodo}. 

3. Application 

By applying the above-mentioned selection rule, we 
can rewrite Sr ~ r' as 

Sr ~ r' = ½I[00At ; rr '1'~0" 1 "Jr- ~I[22E; r r ' ] ~  

+ ¼I[22T2; r r ' ] ~  

where the functions w~ (i = 1, 2, 3) can be readily 
derived by means of  Wigner-Racah calculus for the 

chain of groups SO(3) = O [24, 25]. As a matter of fact, 
we obtain 

~,--3[{dodo}A'°)12-  - 1 or 0 

m2 = 6 Z I{dodo}e~,,,(2)r = (3 cos20 - 1) 2 
),,, 

+ 3 sin40 cos22(p or 3 

~v3 = 4 2 I{dodo}T=,"2'l 2 = 2( sin40 sin22q ~ + sin220) or 2 
),,, 

according to whether the polarization is linear or circu- 
lar. For  linear polarization, (0, q~) are the polar angles 
of  the polarization vector do with respect to the crystal- 
lographic axis and, for circular polarization, the wave 
vector k is parallel to the crystallographic axis. (Of  
course, the angular functions mi (i = 1, 2, 3) do not 
depend on the labels 7", i.e. on the chain SO(3) 
G = O ~ G' ~ G" used in practical computations.) 

We give below the intensities Sr ~ r' for N even (F 
and F '  belong to O) and for N odd (F and F'  belong to 
O*). To pass from Sr_~ r' to Sr,__ r, it is sufficient to 
change FF' into F'F in the intensity parameters L For 
N even, the results are the following: 

SA, --~ A, = ½I[00A I ; A l A1 ]toj 

S A ~ A 2  = 0  

$ 4 , ~  E = ~I[22E; A iE]vo 2 

S A I N T 1  = 0 

S A , ~  T2 = ~I[22Tz; A, T2]~ 3 

JI S A 2 ~ A  2 = g [00A1; A2A2]ro~ 

S,~2~ E = -~I[22E; AzE]r~ z 

S A z ~  T, = ~I[22T2; A2 T,]~3 

S a ~  r~ = 0 

S E - - ~  e = ½ I [ 0 0 A l  ; EE]to, + ~ I [ 2 2 E ;  E E l w  2 

S e ~  T~ = ¼1122T2; ETa]w3 

S e ~  T, = ¼I[22T2; ET2lw, 

ST, ~ T, = ½I[00A1; T, rtlto, + ~I[22E; T, Tl]~72 

+¼I[22T2; T, T, ]~v3 

ST, ~ ra = ~I[22E; T, Tz]vo 2 + 41-11227"2; T 1T2]to3 

ST2 ~ r2 = ~I[00A, ; T 2 Tz]tv , + ~I[22E; T2 T2]w2 

+¼I[22T2; Tz T2]m3 

For N odd, we have the following intensity formulae: 

St6 ~ r6 = ½I[00AI ;/'6-F'6]~71 

St6 ~ r7 = ¼I[22T2; r~r7]~,  

St6 ~ rs = ~I[22E; r 6 r , ] ~  + ¼I[22T2; r6r~]~,  

St7 ~ r7 = ½1[00A i; F7Fv]m 1 
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S,- 7 . , ~ -  ~I[22E; r ~ r s ] ~ ,  + ¼I[22T2; r~rs]~O~ 

S,.~ ~,~ = ~I[00A,; esFs]~ ,  + ~I[22E; FsFs]~ 2 

+¼I[22T2; FsFs]~3 

The intensity formulae given above cover all the 
possible ground states encountered for transition metal 
ions in cubical symmetry. We note that 

$4,  ~ ~ , = S . f ,  . . 4 , = S t , ,  . i , , = S r ~  ~r~=O 

when the scalar contribution (characterized by 
I[00A~; FF]) to the third-order mechanisms is not taken 
into consideration. Therefore, the observation, if any, 
of  the latter transitions would prove the relevance of 
third-order mechanisms. In particular, it would be in- 
teresting to test the importance of the third-order mech- 
anisms in the case of  an ion with configuration 3d s 
(such as Mn2+). 

The expression of the intensity parameters I has been 
described in Section 2 in the weak field coupling 
scheme. (They can be equally well expressed in the 
strong field coupling scheme.) There are three ways to 
deal with the I parameters. First, they may be consid- 
ered as phenomenological parameters to be adjusted 
from experimental data. Second, they may be calculated 
from first principles. We then need to diagonalize-opti-  
mize the matrix of  H~+~ (as done, for instance, in ref. 
26 for Eu 3~ in 15 compounds of interest in solid state 
chemistry) and to calculate isoscalar factors, reduced 
matrix elements and parameters characterizing second- 
and/or third-order mechanisms. Third, they may be 
handled in a mixed (semiphenomenological) way espe- 
cially if we want to reduce the number of  I parameters. 

As an illustration, let us consider the case of  Ni 2+ in 
MgO. The two-photon transitions from the initial state 
i =  3Ae(T2) with F =  T 2 to the final states f =  3T2(E ) 
with F ' =  E and of= 3~(T~) with e ' =  T~ have been 
recently observed for various linear polarizations [20, 
21]. The specialization to the configuration 3d s of  the 
model described here allows us to compute in an ab 

initio way the intensity ratios R~ and R 2 defined in ref. 
21. The theoretical values are Rj = 0.95 and R2 = 1.04, 
to be compared with the experimental values R~ = 1.5- 
3 and R2 = 1.1 [22]. 

4. Conclusion 

In this paper we have concentrated on the intensities 
of two-photon transitions for 3d N ions in octahedral 
symmetry. The model discussed in Section 2 is valid for 
any strength of the crystal field interaction. Therefore, 
the results of  Sections 2 and 3 can be extended mutatis  
mutandis to any n d  N configuration (n = 4 for the palla- 
dium series and n = 5 for the platinum series). They can 

also be applied to tetrahedral symmetry in view of the 
isomorphism of O and T d. Finally, the results given 
here concern one-colour transitions. The extension to 
two-colour transitions (using two different beams) is 
straightforward. 

A particular version of the model presented in this 
paper has been successfully applied to Ni 2+ in MgO; 
the main results have been discussed at REMCES V 
and will be published elsewhere in greater detail [22]. 
The model will be applied to some other experimental 
data (e.g. Co 2+ in KZnF3 [23]) in the thesis by one of 
us (M.D.) and in forthcoming papers. 
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